(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
inc(0) → 0
inc(s(x)) → s(inc(x))
zero(0) → true
zero(s(x)) → false
p(0) → 0
p(s(x)) → x
bits(x) → bitIter(x, 0)
bitIter(x, y) → if(zero(x), x, inc(y))
if(true, x, y) → p(y)
if(false, x, y) → bitIter(half(x), y)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
half(s(s(x))) →+ s(half(x))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(s(x))].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
inc(0') → 0'
inc(s(x)) → s(inc(x))
zero(0') → true
zero(s(x)) → false
p(0') → 0'
p(s(x)) → x
bits(x) → bitIter(x, 0')
bitIter(x, y) → if(zero(x), x, inc(y))
if(true, x, y) → p(y)
if(false, x, y) → bitIter(half(x), y)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
inc(0') → 0'
inc(s(x)) → s(inc(x))
zero(0') → true
zero(s(x)) → false
p(0') → 0'
p(s(x)) → x
bits(x) → bitIter(x, 0')
bitIter(x, y) → if(zero(x), x, inc(y))
if(true, x, y) → p(y)
if(false, x, y) → bitIter(half(x), y)
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
inc :: 0':s → 0':s
zero :: 0':s → true:false
true :: true:false
false :: true:false
p :: 0':s → 0':s
bits :: 0':s → 0':s
bitIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
half,
inc,
bitIterThey will be analysed ascendingly in the following order:
half < bitIter
inc < bitIter
(8) Obligation:
TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
inc(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
zero(
0') →
truezero(
s(
x)) →
falsep(
0') →
0'p(
s(
x)) →
xbits(
x) →
bitIter(
x,
0')
bitIter(
x,
y) →
if(
zero(
x),
x,
inc(
y))
if(
true,
x,
y) →
p(
y)
if(
false,
x,
y) →
bitIter(
half(
x),
y)
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
inc :: 0':s → 0':s
zero :: 0':s → true:false
true :: true:false
false :: true:false
p :: 0':s → 0':s
bits :: 0':s → 0':s
bitIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
half, inc, bitIter
They will be analysed ascendingly in the following order:
half < bitIter
inc < bitIter
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
half(
gen_0':s3_0(
*(
2,
n5_0))) →
gen_0':s3_0(
n5_0), rt ∈ Ω(1 + n5
0)
Induction Base:
half(gen_0':s3_0(*(2, 0))) →RΩ(1)
0'
Induction Step:
half(gen_0':s3_0(*(2, +(n5_0, 1)))) →RΩ(1)
s(half(gen_0':s3_0(*(2, n5_0)))) →IH
s(gen_0':s3_0(c6_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
inc(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
zero(
0') →
truezero(
s(
x)) →
falsep(
0') →
0'p(
s(
x)) →
xbits(
x) →
bitIter(
x,
0')
bitIter(
x,
y) →
if(
zero(
x),
x,
inc(
y))
if(
true,
x,
y) →
p(
y)
if(
false,
x,
y) →
bitIter(
half(
x),
y)
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
inc :: 0':s → 0':s
zero :: 0':s → true:false
true :: true:false
false :: true:false
p :: 0':s → 0':s
bits :: 0':s → 0':s
bitIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
half(gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
inc, bitIter
They will be analysed ascendingly in the following order:
inc < bitIter
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
inc(
gen_0':s3_0(
n311_0)) →
gen_0':s3_0(
n311_0), rt ∈ Ω(1 + n311
0)
Induction Base:
inc(gen_0':s3_0(0)) →RΩ(1)
0'
Induction Step:
inc(gen_0':s3_0(+(n311_0, 1))) →RΩ(1)
s(inc(gen_0':s3_0(n311_0))) →IH
s(gen_0':s3_0(c312_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
inc(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
zero(
0') →
truezero(
s(
x)) →
falsep(
0') →
0'p(
s(
x)) →
xbits(
x) →
bitIter(
x,
0')
bitIter(
x,
y) →
if(
zero(
x),
x,
inc(
y))
if(
true,
x,
y) →
p(
y)
if(
false,
x,
y) →
bitIter(
half(
x),
y)
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
inc :: 0':s → 0':s
zero :: 0':s → true:false
true :: true:false
false :: true:false
p :: 0':s → 0':s
bits :: 0':s → 0':s
bitIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
half(gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
inc(gen_0':s3_0(n311_0)) → gen_0':s3_0(n311_0), rt ∈ Ω(1 + n3110)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
bitIter
(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol bitIter.
(16) Obligation:
TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
inc(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
zero(
0') →
truezero(
s(
x)) →
falsep(
0') →
0'p(
s(
x)) →
xbits(
x) →
bitIter(
x,
0')
bitIter(
x,
y) →
if(
zero(
x),
x,
inc(
y))
if(
true,
x,
y) →
p(
y)
if(
false,
x,
y) →
bitIter(
half(
x),
y)
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
inc :: 0':s → 0':s
zero :: 0':s → true:false
true :: true:false
false :: true:false
p :: 0':s → 0':s
bits :: 0':s → 0':s
bitIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
half(gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
inc(gen_0':s3_0(n311_0)) → gen_0':s3_0(n311_0), rt ∈ Ω(1 + n3110)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(18) BOUNDS(n^1, INF)
(19) Obligation:
TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
inc(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
zero(
0') →
truezero(
s(
x)) →
falsep(
0') →
0'p(
s(
x)) →
xbits(
x) →
bitIter(
x,
0')
bitIter(
x,
y) →
if(
zero(
x),
x,
inc(
y))
if(
true,
x,
y) →
p(
y)
if(
false,
x,
y) →
bitIter(
half(
x),
y)
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
inc :: 0':s → 0':s
zero :: 0':s → true:false
true :: true:false
false :: true:false
p :: 0':s → 0':s
bits :: 0':s → 0':s
bitIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
half(gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
inc(gen_0':s3_0(n311_0)) → gen_0':s3_0(n311_0), rt ∈ Ω(1 + n3110)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(21) BOUNDS(n^1, INF)
(22) Obligation:
TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
inc(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
zero(
0') →
truezero(
s(
x)) →
falsep(
0') →
0'p(
s(
x)) →
xbits(
x) →
bitIter(
x,
0')
bitIter(
x,
y) →
if(
zero(
x),
x,
inc(
y))
if(
true,
x,
y) →
p(
y)
if(
false,
x,
y) →
bitIter(
half(
x),
y)
Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
inc :: 0':s → 0':s
zero :: 0':s → true:false
true :: true:false
false :: true:false
p :: 0':s → 0':s
bits :: 0':s → 0':s
bitIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
half(gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(24) BOUNDS(n^1, INF)